Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
SLAS Technol ; 28(5): 324-333, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37451651

RESUMO

Infectivity assays are essential for the development of viral vaccines, antiviral therapies, and the manufacture of biologicals. Traditionally, these assays take 2-7 days and require several manual processing steps after infection. We describe an automated viral infectivity assay (AVIATM), using convolutional neural networks (CNNs) and high-throughput brightfield microscopy on 96-well plates that can quantify infection phenotypes within hours, before they are manually visible, and without sample preparation. CNN models were trained on HIV, influenza A virus, coronavirus 229E, vaccinia viruses, poliovirus, and adenoviruses, which together span the four major categories of virus (DNA, RNA, enveloped, and non-enveloped). A sigmoidal function, fit between virus dilution curves and CNN predictions, results in sensitivity ranges comparable to or better than conventional plaque or TCID50 assays, and a precision of ∼10%, which is considerably better than conventional infectivity assays. Because this technology is based on sensitizing CNNs to specific phenotypes of infection, it has potential as a rapid, broad-spectrum tool for virus characterization, and potentially identification.

2.
J Am Coll Radiol ; 20(2): 232-242, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36064040

RESUMO

OBJECTIVE: To evaluate whether an imaging classifier for radiology practice can improve lung nodule classification and follow-up. METHODS: A machine learning classifier was developed and trained using imaging data from the National Lung Screening Trial (NSLT) to produce a malignancy risk score (malignancy Similarity Index [mSI]) for individual lung nodules. In addition to NLST cohorts, external cohorts were developed from a tertiary referral lung cancer screening program data set and an external nonscreening data set of all nodules detected on CT. Performance of the mSI combined with Lung-RADS was compared with Lung-RADS alone and the Mayo and Brock risk calculators. RESULTS: We analyzed 963 subjects and 1,331 nodules across these cohorts. The mSI was comparable in accuracy (area under the curve = 0.89) to existing clinical risk models (area under the curve = 0.86-0.88) and independently predictive in the NLST cohort of 704 nodules. When compared with Lung-RADS, the mSI significantly increased sensitivity across all cohorts (25%-117%), with significant increases in specificity in the screening cohorts (17%-33%). When used in conjunction with Lung-RADS, use of mSI would result in earlier diagnoses and reduced follow-up across cohorts, including the potential for early diagnosis in 42% of malignant NLST nodules from prior-year CT scans. CONCLUSION: A computer-assisted diagnosis software improved risk classification from chest CTs of screening and incidentally detected lung nodules compared with Lung-RADS. mSI added predictive value independent of existing radiological and clinical variables. These results suggest the generalizability and potential clinical impact of a tool that is straightforward to implement in practice.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Lesões Pré-Cancerosas , Humanos , Neoplasias Pulmonares/diagnóstico , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Tomografia Computadorizada por Raios X/métodos , Detecção Precoce de Câncer/métodos , Pulmão/patologia , Computadores
3.
Life Sci Alliance ; 5(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35321919

RESUMO

The nucleolus is the site of ribosome assembly and formed through liquid-liquid phase separation. Multiple ribosomal DNA (rDNA) arrays are bundled in the nucleolus, but the underlying mechanism and significance are unknown. In the present study, we performed high-content screening followed by image profiling with the wndchrm machine learning algorithm. We revealed that cells lacking a specific 60S ribosomal protein set exhibited common nucleolar disintegration. The depletion of RPL5 (also known as uL18), the liquid-liquid phase separation facilitator, was most effective, and resulted in an enlarged and un-separated sub-nucleolar compartment. Single-molecule tracking analysis revealed less-constrained mobility of its components. rDNA arrays were also unbundled. These results were recapitulated by a coarse-grained molecular dynamics model. Transcription and processing of ribosomal RNA were repressed in these aberrant nucleoli. Consistently, the nucleoli were disordered in peripheral blood cells from a Diamond-Blackfan anemia patient harboring a heterozygous, large deletion in RPL5 Our combinatorial analyses newly define the role of RPL5 in rDNA array bundling and the biophysical properties of the nucleolus, which may contribute to the etiology of ribosomopathy.


Assuntos
Nucléolo Celular , Proteínas Ribossômicas , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
4.
Cancer Med ; 9(6): 2223-2234, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32012497

RESUMO

Biological morphologies of cells and tissues represent their physiological and pathological conditions. The importance of quantitative assessment of morphological information has been highly recognized in clinical diagnosis and therapeutic strategies. In this study, we used a supervised machine learning algorithm wndchrm to classify hematoxylin and eosin (H&E)-stained images of human gastric cancer tissues. This analysis distinguished between noncancer and cancer tissues with different histological grades. We then classified the H&E-stained images by expression levels of cancer-associated nuclear ATF7IP/MCAF1 and membranous PD-L1 proteins using immunohistochemistry of serial sections. Interestingly, classes with low and high expressions of each protein exhibited significant morphological dissimilarity in H&E images. These results indicated that morphological features in cancer tissues are correlated with expression of specific cancer-associated proteins, suggesting the usefulness of biomolecular-based morphological classification.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Neoplasias Gástricas/diagnóstico , Estômago/patologia , Antígeno B7-H1/análise , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Membrana Celular/metabolismo , Estudos de Viabilidade , Humanos , Imuno-Histoquímica/métodos , Proteínas Repressoras/análise , Proteínas Repressoras/metabolismo , Neoplasias Gástricas/patologia , Análise Serial de Tecidos/métodos
5.
PLoS One ; 14(5): e0215916, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048908

RESUMO

PURPOSE: Blood vessels of the retina provide an easily-accessible, representative window into the condition of microvasculature. We investigated how retinal vessel structure captured in fundus photographs changes with age, and how this may reflect features related to patient health, including blood pressure. RESULTS: We used two approaches. In the first approach, we segmented the retinal vasculature from fundus photographs and then we correlated 25 parameterized aspects ("traits")-comprising 15 measures of tortuosity, 7 fractal ranges of self-similarity, and 3 measures of junction numbers-with participant age and blood pressure. In the second approach, we examined entire fundus photographs with a set of algorithmic CHARM features. We studied 2,280 Sardinians, ages 20-28, and an U.S. based population from the AREDS study in 1,178 participants, ages 59-84. Three traits (relating to tortuosity, vessel bifurcation number, and vessel endpoint number) showed significant changes with age in both cohorts, and one additional trait (relating to fractal number) showed a correlation in the Sardinian cohort only. When using second approach, we found significant correlations of particular CHARM features with age and blood pressure, which were stronger than those detected when using parameterized traits, reflecting a greater signal from the entire photographs than was captured in the segmented microvasculature. CONCLUSIONS: These findings demonstrate that automated quantitative image analysis of fundus images can reveal general measures of patient health status.


Assuntos
Envelhecimento/fisiologia , Microvasos/anatomia & histologia , Microvasos/fisiologia , Vasos Retinianos/anatomia & histologia , Vasos Retinianos/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Pressão Sanguínea , Estudos de Coortes , Feminino , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Fotografação , Adulto Jovem
6.
J Gerontol A Biol Sci Med Sci ; 73(7): 893-901, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29216338

RESUMO

In this study, we describe a morphological biomarker that detects multiple discrete subpopulations (or "age-states") at several chronological ages in a population of nematodes (Caenorhabditis elegans). We determined the frequencies of three healthy adult states and the timing of the transitions between them across the lifespan. We used short-lived and long-lived strains to confirm the general applicability of the state classifier and to monitor state progression. This exploration revealed healthy and unhealthy states, the former being favored in long-lived strains and the latter showing delayed onset. Short-lived strains rapidly transitioned through the putative healthy state. We previously found that age-matched animals in different age-states have distinct transcriptome profiles. We isolated animals at the beginning and end of each identified state and performed microarray analysis (principal component analysis, relative sample to sample distance measurements, and gene set enrichment analysis). In some comparisons, chronologically identical individuals were farther apart than morphologically identical individuals isolated on different days. The age-state biomarker allowed assessment of aging in a novel manner, complementary to chronological age progression. We found hsp70 and some small heat shock protein genes are expressed later in adulthood, consistent with the proteostasis collapse model.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/genética , Transcriptoma , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Genes de Helmintos , Marcadores Genéticos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico Pequenas/genética , Longevidade/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos
7.
Acad Radiol ; 24(12): 1535-1543, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28927581

RESUMO

RATIONALE AND OBJECTIVES: Changes in the composition of body tissues are major aging phenotypes, but they have been difficult to study in depth. Here we describe age-related change in abdominal tissues observable in computed tomography (CT) scans. We used pattern recognition and machine learning to detect and quantify these changes in a model-agnostic fashion. MATERIALS AND METHODS: CT scans of abdominal L4 sections were obtained from Baltimore Longitudinal Study of Aging (BLSA) participants. Age-related change in the constituent tissues were determined by training machine classifiers to differentiate age groups within male and female strata ("Younger" at 50-70 years old vs "Older" at 80-99 years old). The accuracy achieved by the classifiers in differentiating the age cohorts was used as a surrogate measure of the aging signal in the different tissues. RESULTS: The highest accuracy for discriminating age differences was 0.76 and 0.72 for males and females, respectively. The classification accuracy was 0.79 and 0.71 for adipose tissue, 0.70 and 0.68 for soft tissue, and 0.65 and 0.64 for bone. CONCLUSIONS: Using image data from a large sample of well-characterized pool of participants dispersed over a wide age range, we explored age-related differences in gross morphology and texture of abdominal tissues. This technology is advantageous for tracking effects of biological aging and predicting adverse outcomes when compared to the traditional use of specific molecular biomarkers. Application of pattern recognition and machine learning as a tool for analyzing medical images may provide much needed insight into tissue changes occurring with aging and, further, connect these changes with their metabolic and functional consequences.


Assuntos
Envelhecimento , Radiografia Abdominal , Músculos Abdominais/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Osso e Ossos/diagnóstico por imagem , Feminino , Humanos , Aumento da Imagem , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Tomografia Computadorizada por Raios X
8.
Sci Rep ; 7: 46208, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28397803

RESUMO

Aging is a major international concern that brings formidable socioeconomic and healthcare challenges. Small molecules capable of improving the health of older individuals are being explored. Small molecules that enhance cellular stress resistance are a promising avenue to alleviate declines seen in human aging. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits age-related skeletal muscle atrophy in mice. Here we show that tomatidine extends lifespan and healthspan in C. elegans, an animal model of aging which shares many major longevity pathways with mammals. Tomatidine improves many C. elegans behaviors related to healthspan and muscle health, including increased pharyngeal pumping, swimming movement, and reduced percentage of severely damaged muscle cells. Microarray, imaging, and behavioral analyses reveal that tomatidine maintains mitochondrial homeostasis by modulating mitochondrial biogenesis and PINK-1/DCT-1-dependent mitophagy. Mechanistically, tomatidine induces mitochondrial hormesis by mildly inducing ROS production, which in turn activates the SKN-1/Nrf2 pathway and possibly other cellular antioxidant response pathways, followed by increased mitophagy. This mechanism occurs in C. elegans, primary rat neurons, and human cells. Our data suggest that tomatidine may delay some physiological aspects of aging, and points to new approaches for pharmacological interventions for diseases of aging.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Longevidade/fisiologia , Mitofagia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tomatina/análogos & derivados , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculos/efeitos dos fármacos , Músculos/fisiologia , Biogênese de Organelas , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Tomatina/farmacologia , Transcriptoma/genética
9.
J Orthop Res ; 35(10): 2243-2250, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28084653

RESUMO

The purpose of this study is to evaluate the ability of a machine learning algorithm to classify in vivo magnetic resonance images (MRI) of human articular cartilage for development of osteoarthritis (OA). Sixty-eight subjects were selected from the osteoarthritis initiative (OAI) control and incidence cohorts. Progression to clinical OA was defined by the development of symptoms as quantified by the Western Ontario and McMaster Universities Arthritis (WOMAC) questionnaire 3 years after baseline evaluation. Multi-slice T2 -weighted knee images, obtained through the OAI, of these subjects were registered using a nonlinear image registration algorithm. T2 maps of cartilage from the central weight bearing slices of the medial femoral condyle were derived from the registered images using the multiple available echo times and were classified for "progression to symptomatic OA" using the machine learning tool, weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHRM). WND-CHRM classified the isolated T2 maps for the progression to symptomatic OA with 75% accuracy. CLINICAL SIGNIFICANCE: Machine learning algorithms applied to T2 maps have the potential to provide important prognostic information for the development of OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2243-2250, 2017.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Osteoartrite do Joelho/diagnóstico por imagem , Algoritmos , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Análise de Regressão
10.
Proc Natl Acad Sci U S A ; 113(44): 12502-12507, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791127

RESUMO

Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , DNA de Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Fatores de Transcrição/genética , Transcrição Gênica , Linhagem Celular Tumoral , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , DNA Ribossômico/genética , Quadruplex G , Técnicas de Silenciamento de Genes , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fatores de Transcrição/metabolismo
11.
Nucleus ; 7(1): 68-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26962703

RESUMO

A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells.


Assuntos
Algoritmos , Neoplasias da Mama/metabolismo , Nucléolo Celular/metabolismo , Aprendizado de Máquina , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/ultraestrutura , Linhagem Celular Tumoral , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Feminino , Humanos , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Membrana Nuclear/genética , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA Ribossômico/biossíntese , RNA Ribossômico/genética
12.
Biochem Biophys Res Commun ; 464(2): 554-60, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26164235

RESUMO

The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis.


Assuntos
Actinas/fisiologia , Nucléolo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Ribossômico/genética , Glucose/metabolismo , Células HeLa , Humanos , Transcrição Gênica/fisiologia
13.
Trends Cell Biol ; 25(2): 55-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25484346

RESUMO

Cell migration research has recently become both a high content and a high throughput field thanks to technological, computational, and methodological advances. Simultaneously, however, urgent bioinformatics needs regarding data management, standardization, and dissemination have emerged. To address these concerns, we propose to establish an open data ecosystem for cell migration research.


Assuntos
Movimento Celular , Biologia Computacional/normas , Disseminação de Informação , Projetos de Pesquisa/normas , Sistemas de Gerenciamento de Base de Dados , Metanálise como Assunto
14.
Sci Rep ; 4: 6996, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25385348

RESUMO

Non-invasive evaluation of cell reprogramming by advanced image analysis is required to maintain the quality of cells intended for regenerative medicine. Here, we constructed living and unlabelled colony image libraries of various human induced pluripotent stem cell (iPSC) lines for supervised machine learning pattern recognition to accurately distinguish bona fide iPSCs from improperly reprogrammed cells. Furthermore, we found that image features for efficient discrimination reside in cellular components. In fact, extensive analysis of nuclear morphologies revealed dynamic and characteristic signatures, including the linear form of the promyelocytic leukaemia (PML)-defined structure in iPSCs, which was reversed to a regular sphere upon differentiation. Our data revealed that iPSCs have a markedly different overall nuclear architecture that may contribute to highly accurate discrimination based on the cell reprogramming status.


Assuntos
Inteligência Artificial , Núcleo Celular/ultraestrutura , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Reconhecimento Automatizado de Padrão/estatística & dados numéricos , Diferenciação Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Reprogramação Celular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Imagem Molecular
15.
Age (Dordr) ; 35(3): 689-703, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22610697

RESUMO

We present an initial molecular characterization of a morphological transition between two early aging states. In previous work, an age score reflecting physiological age was developed using a machine classifier trained on images of worm populations at fixed chronological ages throughout their lifespan. The distribution of age scores identified three stable post-developmental states and transitions. The first transition occurs at day 5 post-hatching, where a significant percentage of the population exists in both state I and state II. The temperature dependence of the timing of this transition (Q 10 ~ 1.17) is too low to be explained by a stepwise process with an enzymatic or chemical rate-limiting step, potentially implicating a more complex mechanism. Individual animals at day 5 were sorted into state I and state II groups using the machine classifier and analyzed by microarray expression profiling. Despite being isogenic, grown for the same amount of time, and indistinguishable by eye, these two morphological states were confirmed to be molecularly distinct by hierarchical clustering and principal component analysis of the microarray results. These molecular differences suggest that pharynx morphology reflects the aging state of the whole organism. Our expression profiling yielded a gene set that showed significant overlap with those from three previous age-related studies and identified several genes not previously implicated in aging. A highly represented group of genes unique to this study is involved in targeted ubiquitin-mediated proteolysis, including Skp1-related (SKR), F-box-containing, and BTB motif adaptors.


Assuntos
Envelhecimento/fisiologia , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/crescimento & desenvolvimento , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas Culina/química , Proteínas Culina/genética , Análise de Sequência com Séries de Oligonucleotídeos
16.
Neurobiol Aging ; 34(3): 832-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22884549

RESUMO

Normal cognitive aging is associated with deficits in memory processes dependent on the hippocampus, along with large-scale changes in the hippocampal expression of many genes. Histone acetylation can broadly influence gene expression and has been recently linked to learning and memory. We hypothesized that CREB-binding protein (CBP), a key histone acetyltransferase, may contribute to memory decline in normal aging. Here, we quantified CBP protein levels in the hippocampus of young, aged unimpaired, and aged impaired rats, classified on the basis of spatial memory capacity documented in the Morris water maze. First, CBP-immunofluorescence was quantified across the principal cell layers of the hippocampus using both low and high resolution laser scanning imaging approaches. Second, digital images of CBP immunostaining were analyzed by a multipurpose classifier algorithm with validated sensitivity across many types of input materials. Finally, CBP protein levels in the principal subfields of the hippocampus were quantified by quantitative Western blotting. CBP levels were equivalent as a function of age and cognitive status in all analyses. The sensitivity of the techniques used was substantial, sufficient to reveal differences across the principal cell fields of the hippocampus, and to correctly classify images from young and aged animals independent of CBP immunoreactivity. The results are discussed in the context of recent evidence suggesting that CBP decreases may be most relevant in conditions of aging that, unlike normal cognitive aging, involve significant neuron loss.


Assuntos
Envelhecimento/metabolismo , Proteína de Ligação a CREB/metabolismo , Cognição , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Acetilação , Envelhecimento/genética , Animais , Biomarcadores/metabolismo , Epigênese Genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/genética , Ratos , Ratos Long-Evans
17.
Mach Vis Appl ; 23(5): 1047-1058, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23074356

RESUMO

In this work we explored class separability in feature spaces built on extended representations of pixel planes (EPP) produced using scale pyramid, subband pyramid, and image transforms. The image transforms included Chebyshev, Fourier, wavelets, gradient and Laplacian; we also utilized transform combinations, including Fourier, Chebyshev and wavelets of the gradient transform, as well as Fourier of the Laplacian transform. We demonstrate that all three types of EPP promote class separation. We also explored the effect of EPP on suboptimal feature libraries, using only textural features in one case and only Haralick features in another. The effect of EPP was especially clear for these suboptimal libraries, where the transform-based representations were found to increase separability to a greater extent than scale or subband pyramids. EPP can be particularly useful in new applications where optimal features have not yet been developed.

18.
Nat Methods ; 9(7): 697-710, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22743775

RESUMO

Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis and visualization of the imaging data. We review each computational step that biologists encounter when dealing with digital images, the inherent challenges and the overall status of available software for bioimage informatics, focusing on open-source options.


Assuntos
Biologia Computacional/instrumentação , Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Software , Desenho de Equipamento , Design de Software
19.
Cytometry A ; 81(5): 364-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22467531

RESUMO

We present results from machine classification of melanoma biopsies sectioned and stained with hematoxylin/eosin (H&E) on tissue microarrays (TMA). The four stages of melanoma progression were represented by seven tissue types, including benign nevus, primary tumors with radial and vertical growth patterns (stage I) and four secondary metastatic tumors: subcutaneous (stage II), lymph node (stage III), gastrointestinal and soft tissue (stage IV). Our experiment setup comprised 14,208 image samples based on 164 TMA cores. In our experiments, we constructed an HE color space by digitally deconvolving the RGB images into separate H (hematoxylin) and E (eosin) channels. We also compared three different classifiers: Weighted Neighbor Distance (WND), Radial Basis Functions (RBF), and k-Nearest Neighbors (kNN). We found that the HE color space consistently outperformed other color spaces with all three classifiers, while the different classifiers did not have as large of an effect on accuracy. This showed that a more physiologically relevant representation of color can have a larger effect on correct image interpretation than downstream processing steps. We were able to correctly classify individual fields of view with an average of 96% accuracy when randomly splitting the dataset into training and test fields. We also obtained a classification accuracy of 100% when testing entire cores that were not previously used in training (four random trials with one test core for each of 7 classes, 28 tests total). Because each core corresponded to a different patient, this test more closely mimics a clinically relevant setting where new patients are evaluated based on training with previous cases. The analysis method used in this study contains no parameters or adjustments that are specific to melanoma morphology, suggesting it can be used for analyzing other tissues and phenotypes, as well as potentially different image modalities and contrast techniques.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Melanoma/patologia , Melanoma/secundário , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/secundário , Progressão da Doença , Técnicas Histológicas , Humanos , Metástase Neoplásica , Estadiamento de Neoplasias , Reconhecimento Automatizado de Padrão/métodos , Coloração e Rotulagem , Análise Serial de Tecidos
20.
PLoS Comput Biol ; 6(11): e1000974, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21124870

RESUMO

The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays.


Assuntos
Biologia Computacional , Processamento de Imagem Assistida por Computador , Reconhecimento Automatizado de Padrão , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...